Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.

absolute valuea number's distance from zero (0) on a number

line; distance expressed as a positive value Example: The absolute value of both 4, written |4|, and negative 4, written |-4|, equals 4.

addendany number being added

Example: In 14 + 6 = 20, the addends are 14

and 6.

additive identitythe number zero (0); when zero (0) is added to

another number the sum is the number itself

Example: 5 + 0 = 5

additive inversesa number and its opposite whose sum is zero

(0); also called *opposites*

Example: In the equation 3 + (-3) = 0, the

additive inverses are 3 and -3.

algebraic expression an expression containing numbers and

variables (7x) and operations that involve numbers and variables $(2x + y \text{ or } 3a^2 - 4b + 2)$; however, they do not contain equality (=) or

inequality symbols $(<, >, \le, \ge, \text{ or } \ne)$

associative propertythe way in which three or more numbers are grouped for addition or multiplication does *not*

change their sum or product, respectively

Examples:
$$(5+6) + 9 = 5 + (6+9)$$
 or $(2 \times 3) \times 8 = 2 \times (3 \times 8)$

braces {}grouping symbols used to express sets commutative property the order in which two numbers are added or multiplied does *not* change their sum or product, respectively *Examples*: 2 + 3 = 3 + 2 *or* $4 \times 7 = 7 \times 4$ counting numbers (natural numbers)the numbers in the set $\{1, 2, 3, 4, 5, ...\}$ **cube (power)**the third power of a number Example: $4^3 = 4 \times 4 \times 4 = 64$; 64 is the cube of 4 **decimal number**any number written with a decimal point in the number Examples: A decimal number falls between two whole numbers, such as 1.5, which falls between 1 and 2. Decimal numbers smaller than 1 are sometimes called decimal fractions, such as five-tenths, or $\frac{5}{10}$, which is written 0.5. **difference**a number that is the result of subtraction Example: In 16 - 9 = 7, the difference is 7. **digit**any one of the 10 symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 **element** or **member**one of the objects in a set **empty set** or **null set** (Ø) a set with no elements or members **equation**a mathematical sentence stating that the two expressions have the same value

Example: 2x = 10

exponent

(exponential form)the number of times the base occurs as a factor $Example: 2^3$ is the exponential form of $2 \times 2 \times 2$. The numeral two (2) is called the base, and the numeral three (3) is called the exponent.

finite seta set in which a whole number can be used to represent its number of elements; a set that has bounds and is limited

grouping symbolsparentheses (), braces { }, brackets [], and fraction bars indicating grouping of terms in an expression

infinite seta set that is not finite; a set that has no boundaries and no limits

integersthe numbers in the set $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$

member or element one of the objects in a set

multiples the numbers that result from multiplying a given whole number by the set of whole numbers

Example: The multiples of 15 are 0, 15, 30, 45, 60, 75, etc.

natural numbers

(counting numbers)the numbers in the set $\{1, 2, 3, 4, 5, ...\}$

negative integersintegers less than zero

negative numbersnumbers less than zero

null set (ø) or **empty set** a set with no elements or members

number linea line on which ordered numbers can be written or visualized

odd integerany integer *not* divisible by 2; any integer with the digit 1, 3, 5, 7, or 9 in the units place; any

integer in the set {..., -5, -3, -1, 1, 3, 5, ...}

oppositestwo numbers whose sum is zero; also called

additive inverses

Examples:
$$-5 + 5 = 0$$
 or $\frac{2}{3} + \left(\frac{2}{3}\right) = 0$ opposites opposites

order of operations the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and/or division (as read from left to right), then addition and/or subtraction (as read from left to right); also called *algebraic order of operations*

Example:
$$5 + (12 - 2) \div 2 - 3 \times 2 =$$

 $5 + 10 \div 2 - 3 \times 2 =$
 $5 + 5 - 6 =$
 $10 - 6 =$
 4

Example: 2, 5, 8, 11 ... is a pattern. Each number in this sequence is three more than the preceding number. Any number in this sequence can be described by the algebraic rule, 3n - 1, by using the set of counting numbers for n.

pi (π)the symbol designating the ratio of the circumference of a circle to its diameter; an irrational number with common approximations of either 3.14 or $\frac{22}{7}$

positive integersintegers greater than zero

positive numbersnumbers greater than zero

power (of a number)an exponent; the number that tells how many times a number is used as a factor Example: In 2^3 , 3 is the power.

product the result of multiplying numbers together *Example*: In 6 \times 8 = 48, the product is 48.

quotientthe result of dividing two numbers Example: In $42 \div 7 = 6$, the quotient is 6.

ratiothe comparison of two quantities Example: The ratio of a and b is a:b or $\frac{a}{b}$, where $b \neq 0$.

rational number a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$

real numbersthe set of all rational and irrational numbers

repeating decimal a decimal in which one digit or a series of digits repeat endlessly

Examples: 0.3333333... or 0.3

24.6666666... or 24.6

5.27272727... or 5.27

6.2835835... or 6.2835

rootan equal factor of a number

Examples:

In $\sqrt{144} = 12$, the square root is 12. In $\sqrt[3]{125} = 5$, the cube root is 5.

seta collection of distinct objects or numbers

simplify an expressionto perform as many of the indicated operations as possible

solve to find all numbers that make an equation or inequality true

square (of a number) the result when a number is multiplied by itself or used as a factor twice *Example*: 25 is the square of 5.

sumthe result of adding numbers together Example: In 6 + 8 = 14, the sum is 14.

terminating decimala decimal that contains a finite (limited) number of digits

Example: $\frac{3}{8} = 0.375$ $\frac{2}{5} = 0.4$

value (of a variable)any of the numbers represented by the variable

variableany symbol, usually a letter, which could represent a number

Venn diagram a diagram which shows the relationships between sets

whole numbersthe numbers in the set $\{0, 1, 2, 3, 4, ...\}$